首页

AD联系:507867812

至尊国际娱乐

时间:2019-12-12 06:51:30 作者:888真人网址 浏览量:14381

至尊国际娱乐据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”,见下图

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”

普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”,见下图

普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性,如下图

普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性

普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性

如下图

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”,如下图

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性,见图

至尊国际娱乐据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”

普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”

普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性。

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”

至尊国际娱乐普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性。

普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性

1.普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”

2.普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性。

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性

3.普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性。

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”

4.据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”。

普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”。至尊国际娱乐

展开全文
相关文章
ag环亚国际娱乐

普渡大学研究新工艺 提升汽车零部件用陶瓷材料的延展性

赌博网站

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”....

英皇宫殿娱乐app

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”....

九亿娱乐游戏

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”....

杏彩娱乐

据外媒报道,酒杯、导弹头、发动机叶片上的热障涂层、汽车零部件、电子和光学元件等物体通常都是用陶瓷制成的。虽然陶瓷的机械强度很高,但是,如果不是暴露在高温下,在载荷作用下稍微用力拉扯,其就会突然断裂。不过,美国普渡大学(Purdue University)的研究人员研发出一种新工艺,能够让陶瓷克服易碎的特性,使其更具韧性,经久耐用。普渡大学将该工艺称为“闪烧”(flash sintering),即在传统的烧结工艺中增加了一个电场,以大批量制成由陶瓷制成的部件。普渡大学工程学院的Haiyan Wang教授表示:“我们已经能够证明,即使在室温下,利用电场烧结而成的陶瓷在高应变压缩下,会发生塑性变形(有弹性),令人非常惊讶。”该研究表明,在陶瓷形成过程中施加电场,可以让材料在室温下几乎与金属一样,非常容易变形。普渡大学研究小组特别将其技术应用于一种广泛使用的白色颜料 – 二氧化钛中。研究小组的博士后兼研究员Jin Li表示:“此前,纳米孪晶被引入各种金属材料,以提高其强度和延展性。但是,之前却几乎没有研究表明,纳米孪晶和堆叠层错能够大大提升陶瓷的塑性。”二氧化钛在室温下的延展性得以显著提高是因在闪烧过程中,堆叠层错、孪晶和位错等高密度缺陷的出现而造成。此类缺陷的存在消除了陶瓷缺陷成核的需求,而缺陷成核通常需要较大的成核应力,大于陶瓷的断裂应力。本论文的第一作者Li表示:“我们的研究结果非常重要,为以新方式使用多种不同的陶瓷打开了一扇大门,此类新方式可以让陶瓷具备更大的灵活性和耐久性,能够承受重负荷和高温,而不会易碎。”陶瓷的塑性得以提高表示在相对较低的温度下时,其机械耐久性会更高。在产生裂纹之前,研究人员的研究样本陶瓷能够与某些金属一样,承受一样大的压应力。材料工程系教授兼该研究小组的共同负责人Xinghang Zhang表示:“此类具备延展性的陶瓷可用于很多重要应用,例如国防工事、汽车制造、核反应堆和可持续能源设备等。”....

相关资讯
热门资讯